Parseval's identity - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Parseval's identity - traducción al ruso

Parseval's equality; Parseval identity; Parseval equality; Parseval's formula

Parseval's identity         

общая лексика

равенство Парсеваля

sameness         
RELATION EACH THING BEARS TO ITSELF ALONE
Transitivity of identity; Sameness; Qualitative identity; Numerical identity; Identity (Philosophy); Same (philosophy); Philosophers of identity; Numerically identical; Metaphysics of identity

['seimnis]

общая лексика

сходство

тождество

существительное

общая лексика

сходство

подобие

одинаковость

единообразие

тождество

однообразие

монотонность

одинаковость, сходство, единообразие

sameness         
RELATION EACH THING BEARS TO ITSELF ALONE
Transitivity of identity; Sameness; Qualitative identity; Numerical identity; Identity (Philosophy); Same (philosophy); Philosophers of identity; Numerically identical; Metaphysics of identity
sameness noun 1) одинаковость, сходство, единообразие; тождество 2) однообразие

Definición

sameness
n.
1.
Identity, identicalness, oneness.
2.
Similarity, resemblance, correspondence, likeness.
3.
Monotony, want of variety.

Wikipedia

Parseval's identity

In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. Geometrically, it is a generalized Pythagorean theorem for inner-product spaces (which can have an uncountable infinity of basis vectors).

Informally, the identity asserts that the sum of squares of the Fourier coefficients of a function is equal to the integral of the square of the function,

where the Fourier coefficients c n {\displaystyle c_{n}} of f {\displaystyle f} are given by

More formally, the result holds as stated provided f {\displaystyle f} is a square-integrable function or, more generally, in Lp space L 2 [ π , π ] . {\displaystyle L^{2}[-\pi ,\pi ].} A similar result is the Plancherel theorem, which asserts that the integral of the square of the Fourier transform of a function is equal to the integral of the square of the function itself. In one-dimension, for f L 2 ( R ) , {\displaystyle f\in L^{2}(\mathbb {R} ),}

Another similar identity is a one which gives the integral of the fourth power of the function f L 4 [ π , π ] {\displaystyle f\in L^{4}[-\pi ,\pi ]} in terms of its Fourier coefficients given f {\displaystyle f} has a finite-length discrete Fourier transform with M {\displaystyle M} number of coefficients c C {\displaystyle c\in \mathbb {C} } .

if c R {\displaystyle c\in \mathbb {R} } the identity is simplified to
¿Cómo se dice Parseval's identity en Ruso? Traducción de &#39Parseval's identity&#39 al Ruso